Indice

1 Meccanica Orbitale 1

1.1 Il moto dei pianeti e le leggi di Keplero 3
1.2 Il problema degli \(n \)-corpi 4
1.3 Potenziale gravitazionale di un corpo sferico 8
1.4 Il problema dei due corpi (moto kepleriano) 11
 1.4.1 Conservazione dell’energia meccanica 12
 1.4.2 Conservazione del momento della quantità di moto 13
 1.4.3 L’equazione della traiettoria 14
 1.4.4 Dimostrazione della 2ª e 3ª legge di Keplero 24
 1.4.5 Velocità circolare, di fuga e di eccesso iperbolico 28
1.5 Classificazione delle orbite 30
1.6 Unità canoniche 31
1.7 Note e riferimenti bibliografici 32

2 Sistemi di riferimento e misura del tempo 39
2.1 La sfera celeste 39
2.2 Il Sistema di riferimento Eiocentrico-Eclittico 41
 2.2.1 Moto del sistema di riferimento Eiocentrico-Eclittico 42
2.3 Il sistema di riferimento Geocentrico-Equatoriale 43
 2.3.1 Conversione \((\alpha, \delta, r) \rightarrow (x, y, z)\) e viceversa 45
 2.3.2 Conversione \((\lambda, \phi, h) \rightarrow (x, y, z)\) e viceversa 45
2.4 Il sistema di riferimento Topocentrico-Orizzontale 51
2.5 Il sistema di riferimento Perifocale 52
2.6 La misura del tempo 52
 2.6.1 Introduzione 52
 2.6.2 Tempo siderale 53
 2.6.3 Tempo solare 54
 2.6.4 Tempo solare medio e tempo universale 54
 2.6.5 Tempo delle effemeridi 55
 2.6.6 L’anno 55
2.6.7 La Data Giuliana .. 55
2.6.8 Conversioni temporali 56
2.7 Note e riferimenti bibliografici 56

3 Elementi orbitali e trasformazioni di coordinate 57
 3.1 I sei elementi orbitali classici 57
 3.2 Trasformazioni di coordinate 62
 3.2.1 Rotazioni elementari 62
 3.2.2 Trasformazione $T_G \rightarrow T_T$ e viceversa 65
 3.2.3 Trasformazione di coordinate $T_G \rightarrow T_P$ e viceversa 69
 3.3 Calcolo degli elementi orbitali sulla base di r e v 71
 3.4 Calcolo di r e v sulla base degli elementi orbitali 76
 3.5 Note e riferimenti bibliografici 80

4 Calcolo della posizione del satellite in funzione del tempo .. 85
 4.1 Ellisse e iperbole: proprietà analitiche 85
 4.2 Legame tra anomalia vera ed anomalia eccentrica 88
 4.3 L’equazione di Keplero 91
 4.3.1 L’equazione di Keplero in forma analitica 97
 4.4 Tempo di volo su orbita parabolica 98
 4.5 Tempo di volo su orbita iperbolica 102
 4.5.1 Interpretazione geometrica di F 105
 4.6 Soluzione del problema inverso di Keplero 107
 4.6.1 Soluzione per orbita ellittica 108
 4.6.2 Soluzione per orbita parabolica 114
 4.6.3 Soluzione per orbita iperbolica 119
 4.7 Formule universali per le orbite coniche 123
 4.8 Gli invarianti fondamentali di Lagrange 123
 4.9 Effemeridi dei pianeti 129
 4.9.1 Effemeridi di bassa precisione 130
 4.10 Note e riferimenti bibliografici 132

5 Problemi di meccanica orbitale 141
 5.1 Mutua visibilità di due satelliti 141
 5.2 Studio delle condizioni di eclissi di un satellite 146
 5.2.1 Calcolo della posizione del Sole 147
 5.2.2 Eclissi con modello d’ombra cilindrico 149
 5.2.3 Eclissi con modello d’ombra conico 149
 5.3 Orizzonte del satellite 156
 5.3.1 Arco spazzato 157
 5.3.2 Campo di vista 158
 5.4 Determinazione orbitale con misure di posizione 162
<table>
<thead>
<tr>
<th>Capitolo</th>
<th>Titolo</th>
<th>Pagina</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>Determinazione orbitale con misure angolari</td>
<td>168</td>
</tr>
<tr>
<td>5.6</td>
<td>Vincoli orbitali imposti dalla stazione di lancio</td>
<td>176</td>
</tr>
<tr>
<td>5.7</td>
<td>Note e riferimenti bibliografici</td>
<td>177</td>
</tr>
<tr>
<td>6</td>
<td>Il problema di Lambert</td>
<td>185</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduzione</td>
<td>185</td>
</tr>
<tr>
<td>6.2</td>
<td>L’equazione di Lambert</td>
<td>187</td>
</tr>
<tr>
<td>6.3</td>
<td>Considerazioni geometriche del problema</td>
<td>190</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Posizione del fuoco vacante</td>
<td>190</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Ellisse di minima energia</td>
<td>192</td>
</tr>
<tr>
<td>6.4</td>
<td>Soluzione del problema di Lambert</td>
<td>196</td>
</tr>
<tr>
<td>6.4.1</td>
<td>Orbite ellittiche</td>
<td>197</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Orbite iperboliche</td>
<td>197</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Orbite paraboliche</td>
<td>197</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Procedura per la soluzione del problema</td>
<td>199</td>
</tr>
<tr>
<td>6.5</td>
<td>Eccentricità dell’orbita di trasferimento</td>
<td>203</td>
</tr>
<tr>
<td>6.6</td>
<td>Calcolo del vettore velocità iniziale</td>
<td>206</td>
</tr>
<tr>
<td>6.7</td>
<td>Il problema di Lambert con variabili universali</td>
<td>208</td>
</tr>
<tr>
<td>6.8</td>
<td>Note e riferimenti bibliografici</td>
<td>212</td>
</tr>
<tr>
<td>7</td>
<td>Manovre orbitali</td>
<td>217</td>
</tr>
<tr>
<td>7.1</td>
<td>Equazione di Tsiolkovsky</td>
<td>217</td>
</tr>
<tr>
<td>7.2</td>
<td>Introduzione alle manovre orbitali</td>
<td>222</td>
</tr>
<tr>
<td>7.3</td>
<td>Manovre ad un impulso</td>
<td>223</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Introduzione</td>
<td>223</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Cambiamento della quota di apocentro (o di pericentro)</td>
<td>225</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Cambiamento dei valori di e ed a</td>
<td>226</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Cambiamento di ω con a ed e invariati</td>
<td>227</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Cambiamento di piano orbitale</td>
<td>231</td>
</tr>
<tr>
<td>7.4</td>
<td>Manovre a più impulsi</td>
<td>234</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Manovra di Hohmann</td>
<td>234</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Ottimalità della manovra di Hohmann</td>
<td>240</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Trasferimento biellittico</td>
<td>249</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Cambiamento di piano con manovra a tre impulsi</td>
<td>254</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Manovra di Hohmann con cambiamento di piano orbitale</td>
<td>261</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Manovre a N impulsi</td>
<td>266</td>
</tr>
<tr>
<td>7.5</td>
<td>Trasferimenti orbitali con Δv prefissati</td>
<td>266</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Utilizzo di una manovra di Hohmann</td>
<td>268</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Utilizzo di una manovra generica</td>
<td>273</td>
</tr>
<tr>
<td>7.6</td>
<td>Finestra di lancio</td>
<td>276</td>
</tr>
<tr>
<td>7.7</td>
<td>Note e riferimenti bibliografici</td>
<td>277</td>
</tr>
</tbody>
</table>
INDICE

8 Rifasamento orbitale e rendez-vous 285
 8.1 Introduzione ... 285
 8.2 Rifasamento per il *rendez-vous* 286
 8.2.1 Rifasamento con manovra di Hohmann 286
 8.2.2 Rifasamento con manovra biellittica 295
 8.2.3 Rifasamento mediante manovra di Lambert 298
 8.2.4 Rifasamento di orbite geostazionarie 302
 8.3 Manovre di *rendez-vous* terminale 304
 8.3.1 Modello matematico per il moto relativo 307
 8.3.2 Le equazioni di Hill 311
 8.3.3 Soluzione del sistema linearizzato 313
 8.3.4 Manovra terminale a due impulsi 318
 8.4 Note e riferimenti bibliografici 324

9 Moto di un satellite in condizioni di spinta continua 331
 9.1 Introduzione ... 331
 9.1.1 Livello di spinta 332
 9.2 Equazioni del moto in presenza di spinta continua 334
 9.2.1 Variazione di velocità ottenibile 335
 9.2.2 Variazioni impulsive di massa 338
 9.3 Introduzione ai trasferimenti a spinta continua 339
 9.3.1 Equazioni del moto in forma polare 340
 9.4 Caso di spinta circonferenziale 343
 9.4.1 Calcolo delle condizioni di fuga 344
 9.5 Caso di spinta radiale 350
 9.5.1 Calcolo delle condizioni di fuga 351
 9.5.2 Il “pozzo di potenziale” 360
 9.5.3 Partenza da orbita ellittica 368
 9.6 Note e riferimenti bibliografici 370

10 Moto del satellite in presenza di effetti perturbativi 377
 10.1 Introduzione .. 377
 10.2 Accelerazioni di perturbazione 378
 10.2.1 Sistema di riferimento RTN 379
 10.2.2 Resistenza aerodinamica 379
 10.2.3 Asimmetrie del campo gravitazionale 389
 10.2.4 Presenza di un terzo corpo 397
 10.3 Il metodo di Cowell 397
 10.4 Il metodo di Encke 400
 10.4.1 Procedura di calcolo 402
 10.4.2 Rettifica dell’orbita 403
 10.5 Equazioni di perturbazione 403
10.5.1 Calcolo di $\frac{da}{dt}$ e $\frac{de}{dt}$ 403
10.5.2 Calcolo di $\frac{di}{dt}$.. 407
10.5.3 Calcolo di $\frac{d\Omega}{dt}$ 408
10.5.4 Calcolo di $\frac{d\omega}{dt}$ 409
10.5.5 Calcolo di $\frac{dM}{dt}$.. 411
10.5.6 Calcolo di $\frac{d\nu}{dt}$.. 412
10.5.7 Utilizzo delle equazioni di perturbazione 412
10.5.8 Formulazione attraverso parametri equinozials 415
10.5.9 Variazioni secolari e di corto periodo 416
10.6 Effetti legati alla resistenza aerodinamica 416
10.6.1 Variazione istantanea dei parametri orbitali 417
10.6.2 Variazione secolare dei parametri orbitali 418
10.6.3 Variazione della forma dell’orbita 423
10.7 Effetti legati allo schiacciamento dei poli terrestri 424
10.7.1 Variazione secolare di Ω e ω 425
10.7.2 Inclinazioni critiche 428
10.7.3 Orbite eliosincrone 432
10.7.4 Variazione secolare dei rimanenti parametri orbitali ... 433
10.8 Note e riferimenti bibliografici 433

11 Missioni Interplanetarie 441
11.1 Il metodo delle coniche raccordate 441
11.2 Perturbazioni introdotte da un terzo corpo 444
11.3 Sfera d’influenza ... 447
11.3.1 Approssimazione di a_{1d} 448
11.3.2 Approssimazione di a_{2d} 449
11.3.3 Approssimazione di a_{1S} e a_{2S} 450
11.4 Incontro iperbolico .. 454
11.4.1 Prestazioni nell’incontro iperblico 459
11.5 Analisi di missione con manovre impulsive 466
11.5.1 Fase eliocentrica 467
11.5.2 Fase di fuga ... 468
11.5.3 Fase di cattura .. 472
11.5.4 Differenti strategie di trasferimento 477
11.6 Note e riferimenti bibliografici 484

II Dinamica e Controllo dei Satelliti 493

12 Equazioni del moto e sistemi di riferimento 495
12.1 Velocità ed accelerazione di un punto 496
12.2 Centro di massa ... 497
12.3 Quantità di moto .. 497
12.4 Diadici .. 498
12.5 Momento della quantità di moto 499
12.6 Equazioni cardinali 501
12.7 Caso di polo non coincidente con il centro di massa 503
12.8 Energia cinetica .. 504
12.9 Terne di riferimento 506
12.10 Angoli di Eulero .. 507
12.11 Velocità angolari .. 512
 12.11.1 Proiezione di ω_O su T_B 512
 12.11.2 Proiezione di ω_{BO} su T_B 514
12.12 Note e riferimenti bibliografici 517

13 Moto di satelliti con stabilizzazione passiva 525
13.1 Introduzione ... 525
 13.1.1 Equazioni di Eulero 528
13.2 Satelliti stabilizzati a singolo spin 532
 13.2.1 Cono mobile e cono fisso 533
13.3 Moto di un satellite stabilizzato a singolo spin 538
 13.3.1 Precessione diretta e retrograda 540
13.4 Stabilità delle rotazioni 544
 13.4.1 Dinamica perturbata del satellite 545
13.5 Controllo della velocità angolare di rotazione 546
 13.5.1 Il meccanismo a “a yo-yo” 547
 13.5.2 Dimensionamento del meccanismo 547
13.6 Dissipazione di energia su satelliti a singolo spin 553
13.7 Satelliti con stabilizzazione a doppio spin 560
 13.7.1 Studio della stabilità del sistema 564
13.8 Coppie di disturbo agenti sui satelliti 568
 13.8.1 Coppie dovute al gradiente di gravità 569
 13.8.2 Coppie dovute al campo magnetico terrestre 578
 13.8.3 Coppie dovute alla pressione di radiazione solare .. 583
13.9 Equazioni linearizzate per un’orbita circolare 595
13.10 Satelliti stabilizzati a gradiente di gravità 597
 13.10.1 Stabilità del moto 598
 13.10.2 Ampiezza dell’oscillazione in assetto 606
 13.10.3 Smorzamento delle oscillazioni d’assetto con smorzatori passivi ... 610
13.11 Note e riferimenti bibliografici 616
Indice

14 Controllo attivo dei satelliti 635
14.1 Dispositivi utilizzati per il controllo attivo 635
14.2 Equazioni del moto di un satellite con rotori interni 640
14.3 Controllo in beccheggio di un satellite 645
 14.3.1 Risposta del sistema in ciclo aperto 646
 14.3.2 Definizione della legge di controllo 647
 14.3.3 Risposta in ciclo chiuso ad un ingresso impulsivo 650
 14.3.4 Calcolo del massimo valore di angolo di assetto 651
 14.3.5 Dimensionamento del controllore 654
 14.3.6 Dimensionamento della ruota di momento angolare 656
14.4 Controllo in rollio-imbardata 659
 14.4.1 Dinamica del satellite in rollio-imbardata 659
 14.4.2 Calcolo della risposta in rollio ad un disturbo costante 662
 14.4.3 Sistema di controllo attivo basato su propulsori 666
 14.4.4 Implementazione del controllore 676
14.5 Note e riferimenti bibliografici 687

III Appendici 701

A Formule universali per le orbite coniche 703
 A.1 Equazioni del moto con variabili universali 703
 A.2 Risoluzione delle equazioni differenziali del moto 705
 A.3 Risoluzione numerica dell’equazione di Keplero 711
 A.4 Calcolo di r e v con i coefficienti di Lagrange 712
 A.4.1 Espressione dei coefficienti di Lagrange 713
 A.5 Interpretazione fisica di \(\chi \) 715
 A.6 Espressioni alternative dei coefficienti di Lagrange 717
 A.6.1 Coefficienti di Lagrange in termini di \(\Delta \nu \) 718
 A.6.2 Coefficienti di Lagrange in termini di \(\Delta E, \Delta F o \Delta D \) 721

B Trigonometria sferica 723

C Modello dell’atmosfera 725
 C.1 Dati di riferimento 725

D Caratteristiche dei principali corpi del Sistema Solare 731
 D.1 Alcune note sulla lettura delle tabelle 731
 D.2 Sole 734
 D.3 Mercurio 736
 D.4 Venere 738
 D.5 Terra 740
 D.6 Luna 742
D.7 Marte ... 744
D.8 Giove ... 746
D.9 Saturno ... 748
D.10 Urano ... 750
D.11 Nettuno ... 752
D.12 Plutone ... 754

Bibliografia ... 762

Indice Analitico ... 763